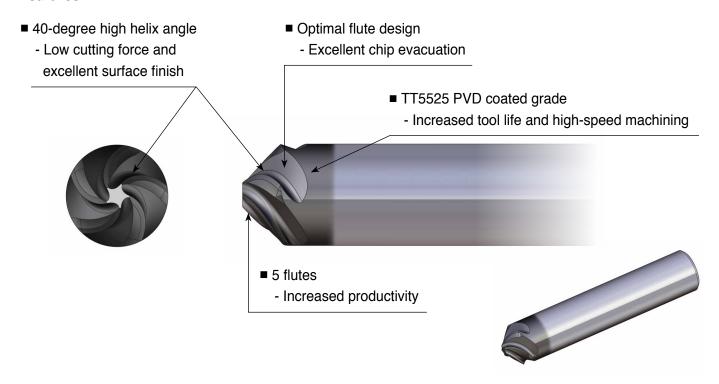
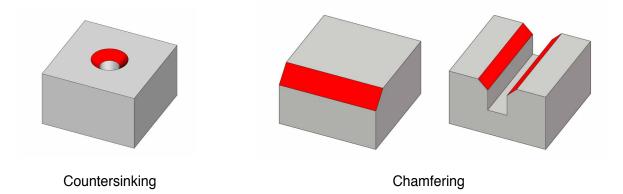
December 2020

www.taegutec.com 1/4

45° Chamfering Solid End Mill with 5 Flute High Helix Angle



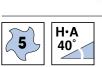
KEY POINT

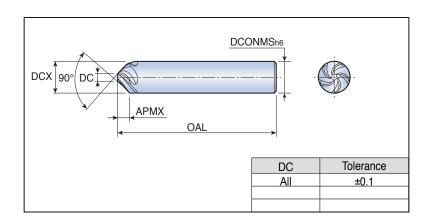

TaeguTec's APEXMILL has launched a 45° chamfering solid end mill with 5 flutes and high helix angle.

TaeguTec has expanded its chamfering solid end mill line by adding to the current uncoated two and four flute straight cutting edge APEXMILL family. The new end mill not only reduces the cutting force during machining due to its high helix cutting edge, but also improves productivity due to the five flutes design. It is also suitable for high-speed machining and increases tool life with the latest coated grade.

Features

Applications


HCEM 5



5 flute, for chamfering

Designation		Feed (mm/tooth)	Dimension (mm)					Grade
			DCX	DC	OAL	APMX	DCONMS	TT5525
HCEM	5080	0.02-0.06	8	2	63	3.0	8	•
	5100	0.03-0.07	10	2.5	72	3.8	10	•
	5120	0.03-0.08	12	3	83	4.5	12	•
	5160	0.04-0.10	16	4	92	6.0	16	•
	,						a: Sto	ndard itams

Recommended Cutting Conditions

Warkninga material	Vo (m/min)	fz (mm/tooth)						
Workpiece material	Vc (m/min)	Ø8	Ø10	Ø12	Ø16			
Cast iron	80-130	0.020-0.060	0.025-0.070	0.030-0.080	0.040-0.100			
Aluminum	130-170	0.020-0.140	0.025-0.160	0.030-0.180	0.040-0.200			
Carbon steel & Alloy steel	70-120	0.015-0.060	0.020-0.070	0.025-0.080	0.030-0.100			
Hardened steel	20-30	0.010-0.050	0.015-0.060	0.020-0.070	0.025-0.080			
Stainless	20-40	0.015-0.060	0.020-0.070	0.025-0.080	0.030-0.100			